

APPLICATIONS

generation

Power
distribution

Railway
equipment

Rolling
stock

OVERVIEW

- Time delay relay, pick-up, drop-out
- Double configuration: 4 timed contacts or 2 timed +2 instantaneous
- Time range from 0.1s to 9 hours
- Great accuracy over the entire range
- High EMC immunity
- Solid and rugged construction for heavy and intensive duties
- Self-cleaning contacts
- Magnetic arc blow-out on all models.
- Excellent shock and vibration resistance
- Wide range of sockets
- Positive mechanical keying for relay and socket

DESCRIPTION

The TM series is a range of relays with electronic time delay on pick-up or drop-out.

It is build on the BIPOK electromechanical base on which is added a specific digital electronic circuit designed with few components carefully chosen among the best professional products.
With the same relay it is possible to manage a time from 0.1 second to over 9 hours, with the greatest accuracy over the entire range. This is thanks to the fact that the relay has 16 intermediate scales, selectable by the user.

The switching time is adjustable through the dipswitches located on the front of the relay. The 4-bit dipswitch serves for selecting the most suitable intermediate scale, while the 8 -bit dipswitch is used for a precision selection of the switching time.

On request, the models are available with fixed switching time to avoid modifications to the time setting.
The electronic circuit is immune to high electromagnetic interference, typical of high voltage electricity stations.

The design and construction procedures can ensure a wide electrical life and high reliability level also in harsh operating environments or with strong temperature fluctuations.

Excellent electrical and mechanical performance levels allow the product to be used in the most demanding sectors such as control and signalling functions in power plants, electrical stations, rolling stock or in industries with continuous production processes.
A specific treatment (P5GEO or P6GEO) combine the coil tropicalization with gold-plated contacts allowing the use of these relays in geothermal power plants.

STANDARD COMPLIANCE

EN 61810-1	EN 60077
EN 61810-2	EN 50155
EN 61810-7	EN 60695-2-10
EN 61373	EN 61000
EN 45545-2	EN 60529
ASTM E162, E662	

MODELS	FUNCTION		NOMINAL CURRENT		NUMBER OF CONTACTS		ROLLING STOCK APPLICATION
	Pick-up	Drop-out	5A	10A	Time-delayed	Instantaneous	
TM2E	-		-		2	2	-
TM4E	-		-		4	-	-
TMS2E	-			-	2	2	-
TMS4E	.			.	4	-	-
TM2R		-	-		2	2	-
TM4R		-	-		4	-	-
TMS2R		-		-	2	2	-
TMS4R		-		-	4	-	-

COIL DATA

Nominal voltages Un		
(1)	DC: 12-24-36-48-72-96-110-125-132-144-220	AC: 12-24-48-110-127-220-230
Max. consumption at Un	$4 \mathrm{~W} / 5 \mathrm{VA}$	
Operating range ${ }^{(1)}$	$80 \ldots 115 \%$ Un	
Rolling stock version ${ }^{(2)}$ (3)	DC: 70...125\% Un	
Type of duty	Continuous	
Drop-out voltage ${ }^{(4)}$	DC: >5\% Un \quad AC: >15\% Un	

(1) Other values on request.
(2) See "Ordering scheme" table for order code.
(3) For operating ranges different to that specified by EN60077, refer to table "Rolling stock versions - Special Ranges".
(4) Limit value for supply voltage, expressed as \% of the nominal value, beneath which the relay is certainly de-energized.

CONTACT DATA	TM2E - TM2R	TM4E- TM4R	TMS2E- TMS2R	TMS4E - TMS4R
Number and type	$2+2$ instantaneous SPDT, form C	4 SPDT, form C	$2+2$ instantaneous SPDT, form C	4 SPDT, form C
Current Nominal ${ }^{(1)}$ Maximum peak $(1 \mathrm{~min})^{(2)}$ Maximum pulse $(10 \mathrm{~ms})^{(2)}$				
Example of electrical life expectancy ${ }^{(3)}$ 1,800 operations/h	0.2 A - $110 \mathrm{Vdc}-\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}: 10^{5}$ operations $0.7 \mathrm{~A}-110 \mathrm{Vdc}-\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}: 10^{5}$ operations		0.5 A - $110 \mathrm{Vdc}-\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}: 10^{5}$ operations $1 \mathrm{~A}-110 \mathrm{Vdc}-\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}: 10^{5}$ operations	
Minimum load ${ }^{(4)} \quad$ Standard contacts Gold-plated contact P4GEO Gold-plated contact P8		500 mW 100 mW 50 mW	$\mathrm{V}, 20 \mathrm{~mA})$ $\mathrm{V}, 5 \mathrm{~mA})$ $\mathrm{V}, 5 \mathrm{~mA})$	
Maximum breaking voltage	$250 \mathrm{Vdc} / 350 \mathrm{Vac}$			
Contact material	AgCu		$\mathrm{Ag} / \mathrm{AgCu}$	
Operating time at Un(ms) ${ }^{(6)}{ }^{(7)}$	$D C^{(8)}-\mathrm{AC}$			
Pick-up (NO contact closing) Drop-out (NC contact closing)		≤ 20 ≤ 15	a ≤ 20 ≤ 20	

(1) On all contacts simultaneously, reduction of 30%.
(2) The max. peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents
(3) For other values, see electrical life expectancy curves.
(4) Values referred to a new product, measured in laboratory. The ability to maintain this performance over the time depends on the environmental conditions and the contact' frequency use. The use of gold plated contacts is recommended in the case of very low loads.
(5) Specifications of contacts on new relay
a. Plating material: P4 GEO: gold-nickel alloy (>6 $) \quad$ P8: gold-cobalt alloy $(>5 \mu)$, knurled contact
b. When the gold-plated contact is subject to heavy loads, it will be degraded on the surface. In such case, the characteristics of the standard contact should be taken into consideration. This does not impair relay operation.
(6) Times for the instanteous component of the relay.
(7) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces). It should be added to the preset delay time.
(8) Addition of a flyback diode connected in parallel with the coil (DC version only) causes an increase in operating time when the relay drops out.

Insulation resistance (at 500 Vdc)
between electrically independent circuits and between these circuits and ground between open contact parts

Withstand voltage at industrial frequency

between electrically independent circuits and between these circuits and ground between open contact parts between adjacent contacts

Withstand voltage at industrial frequency (1.2/50 $\mathrm{s}-0.5 \mathrm{~J}$)
between electrically independent circuits and between these circuits and ground between open contact parts
> 1,000 M

$$
>1,000 \mathrm{M} \Omega
$$

$2 \mathrm{kV}(1 \mathrm{~min})-2.2 \mathrm{kV}(1 \mathrm{~s})$
1 kV (1 min) - 1.1 kV (1 s)
2.5 kV (1 min) - 3 kV (1 s)

5 kV
 3 kV

MECHANICAL SPECIFICATIONS	Mechanical life	DC: 20×10^{6}
AC: 10×10^{6} operations		
Maximum switching rate	Mechanical life expectancy	3,600 operations / hour
Degree of protection (with relay mounted)	IP40	
Dimensions (mm) ${ }^{(1)}$	$40 \times 50 \times 97$	
Weight (g)	~ 220	

1. Output terminals excluded.

ENVIRONMENTAL SPECIFICATIONS		
Operating temperature	Standard	-25° to $+55^{\circ} \mathrm{C}$
	Version for railway, rolling stock	-25° to $+70^{\circ} \mathrm{C}$
Storage and shipping temperature		-40° to $+85^{\circ} \mathrm{C}$
Relative humidity		Standard: $75 \% \mathrm{RH} \quad$ Tropicalized: $95 \% \mathrm{RH}$
Resistance to vibrations		$5 \mathrm{~g}-10$ to $55 \mathrm{~Hz}-1 \mathrm{~min}$
Resistance to shock		$20 \mathrm{~g}-11 \mathrm{~ms}$
Fire behaviour		Vo

STANDARDS AND REFERENCE VALUES

EN 61810-1, EN 61810-2, EN 61810-7
EN 61812-1
EN 60695-2-10
EN 61000
EN 60529

Electromechanical elementary relays
Timer relays
Fire behaviour
Electromagnetic compatibility
Degree of protection provided by enclosures

Unless otherwise specified, the products are designed and manufactured according to the requirements of the above-mentioned European and International standards.
In accordance with EN 61810-1, all items of technical data are referred to ambient temperature $23^{\circ} \mathrm{C}$, atmospheric pressure 96 kPa and 50% humidity.
Tolerance for coil resistance, nominal electrical input and nominal power is $\pm 7 \%$.

RAILWAYS, ROLLING STOCK - STANDARDS

EN 60077
EN 50155
EN 61373
EN 45545-2
ASTM E162, E662
CU TR 001/2011

Electric equipment for rolling stock. General service conditions and general rules
Electronic equipment used on rolling stock
Rolling stock equipment. Shock and vibration tests, Cat 1 Class B
Fire behavior, Cat E10, Requirement R26, Vo
Fire behaviour
Safety of railway rolling stock - EAC certification

RAILWAYS, ROLLING STOCK - SPECIAL OPERATING RANGES ${ }^{(1)}$

Nominal voltage	Minimum pick-up voltage	Maximum operating voltage	Order symbol ${ }^{(1)}$
24 Vdc	18	33	Z01
24 Vdc	16	32	Z02
24 Vdc	16.8	32	Z03
72 Vdc	55	104	Z01
110 Vdc	77	144	ZO1

[^0]| P2 | Tropicalization of the coil with epoxy resin for use with $95 \% \mathrm{RH}\left(@ \mathrm{~T} 50^{\circ} \mathrm{C}\right)$. This treatment also protects the coil
 against corrosion which could occur by combination of the humidity with certain chemical agents, such as those
 found in acid atmospheres (typical of geothermal power stations) or saline atmospheres |
| :--- | :--- |
| P4GEO | Gold plating of contacts with gold-nickel alloy, thickness $\geq 6 \mu$. This treatment ensures long-term capacity of the
 contact to conduct lower currents in harsh ambient conditions such as acid atmospheres (typical of geothermal
 power stations) or saline atmospheres |
| P5GEO | P4GEO gold-plating of contacts + P2 coil tropicalization |
| P6GEO | P4GEO type gold-plating, but applied to contacts, contact terminal and output terminals + P2 coil tropicalization |
| P7 | AgCdO (silver cadmium oxide) contacts. |
| P8 Gold plating of contacts with gold-cobalt alloy, thickness $\geq 5 \mu$, knurled fixed contact. This finish allows further | |
| improvement of the gold-plated contact performance compared to the treatment P4GEO. | |
| LED | LED indicator showing presence of power supply, wired in parallel with the coil. |
| FLYBACK DIODE | Polarized component connected in parallel with the coil (type 1N4007 or BYW56 for rolling stock version) designed |
| to suppress overvoltages generated by the coil when de-energized. | |
| TRANSIL | Non-polarized component connected in parallel with the coil. Behaviour is similar to that of a varistor, with faster
 operating times. |

ORDERING SCHEME

$\begin{aligned} & \text { PRODUCT } \\ & \text { CODE } \end{aligned}$	APPLICATION ${ }^{(1)}$	CONFIGURATION A	CONFIGURATION B	TYPE OF POWER SUPPLY	NOMINAL VOLTAGE (V) ${ }^{(2)}$	KEYING POSITION ${ }^{(3)}$ / OPTION
TM2E TM4E TMS2E TMS4E TM2R TM4R TMS2R TMS4R	E: Energy F: Railway Fixed Equipment R: Railway Rolling Stock	1: Standard 2: Diode // 3: Varistor 4: Led 5: Diode // + Led 6: Varistor + Led 7: Transil 8: Transil + Led	0: Standard 2: P2 4: P4 GEO 5: P5 GEO 6: P6 GEO 7: P7 8: P8	C: Vdc A: Vac 50 Hz H: Vac 60 Hz	$\begin{gathered} 012-024-036 \\ 048-072-096 \\ 100-110-125 \\ 127-132-144 \\ 220-230 \end{gathered}$	XXX L: Iow temperature

[^1]

TM2E-TMS2E

TM2R - TMS2R

TM4E - TMS4E

TM4R - TMS4R

Relays with time delay on drop-out require an auxiliary power supply to ensure correct timing (terminal 2B)

FUNCTIONAL DIAGRAM

Time-delay on pick-up (version 2E, 4E)

Time-delay on drop-out (version 2R, 4R)
${ }^{(1)}$ Intantaneous contacts are present only on versions "2E" and "2R"

Time setting	By means of DIP switches

Time setting range	$100 \mathrm{~ms} \ldots .32,768 \mathrm{~s}$
Intermediate scale	16, from 1 second to 32,768 seconds
Resolution of switching time setting	$1 / 256$ of the selected scale
Accuracy, time-delay ${ }^{(1)}$	$\pm 1 \%$ of the switching time $\pm 0.5 \%$ of the scale
Accuracy, repeatability	DC: $\pm 0.5 \% \quad$ AC: $\pm 0.5 \%+20 \mathrm{~ms}$
Reset	$<100 \mathrm{~ms}$ in time-delay phase $<400 \mathrm{~ms}$
Insensitivity to voltage drops	$<100 \mathrm{~ms}$
(1) Additional error for drop-out versions: 100 ms	

The switching time is adjustable via the dipswitches (4- and 8-bit respectively) located on the front of the relay, through which it is possible to obtain time delays from 100 ms to 32,768 seconds (about 9 hours).
To adjust the switching time, the first step is to adjust the intermediate scale $T(s)$, by selecting one of the 16 available scales using the 4-bit dipswitch. The values available are given in table 1.
The value of the $T(s)$ scale should be the next highest numerically than the value of the required switching time.
E.g. Switching time: 3,600 seconds \rightarrow intermediate scale to set: 4096 seconds

The $T(s)$ scale is set by identifying the switches that add up to the ΣT value indicated in table 1 , and positioning them at " 1 ". Next, proceed to set the switching time by means of the 8 -bit dipswitch.

$\Sigma \mathrm{t}$
Switching time
dipswitches
(8bit)
ΣT
Intermediate scale
dipswitches
(4 bit)

The switching time is set by identifying the 16 -bit dipswitches that add up to the Σt value, as calculated below, and positioning them at " 1 ":
$\Sigma t=\frac{\mathrm{t} \times 256}{\mathrm{~T}}$
where $t(s)$: required switching time $T(s)$: full scale time set previously

Example: Relay with time delay 22 sec . and full scale time 32 sec .
For the full scale time of 32 s , select value 5 in the ΣT column (see table), then identify the switches corresponding to 4 and 1 ($4+1=5$) and position them at " 1 ". For the delay time of 22 s , set an Σ t value of 176 (i.e. $22 \times 256 / 32$), then identify the switches corresponding to 128,32 and $16(128+32+16=176)$ and position them at " 1 ".

DIMENSIONS

SOCKETS	
Number of terminals	16
For wall or rail mounting	
Spring clamp, wall or DIN H35 rail mounting	PAIR160
Screw, wall or DIN H35 rail mounting	$48 \mathrm{BIP20-I} \mathrm{DIN}$
Screw, wall mounting	48 BL
	Spring clamp
For flush mounting	Screw
Double faston $(4.8 \times 0.8 \mathrm{~mm})$	PRIR160

For more details, see specifications of mounting accessories.

RETAINING CLIPS - CORRESPONDENCE WITH SOCKETS

Number of clips per relay
1, 2 for use on rolling stock

SOCKET MODEL	CLIP MODEL	
For wall or rail mounting		
PAIR160, PRIR160, 48BIP20-I DIN, 48BL		RT48
For flush mounting	ADF2	RT48
	$431 L^{(1)}$	RT43
For mounting on PCB		

(1) Insert the clip before fastening the socket on the panel.

ELECTRICAL LIFE EXPECTANCY ${ }^{(1)}$

[^2]Before installing the relay on a wired socket, disconnect the power supply.
The preferential mounting position is on the wall, with the relay positioned horizontally in the "reading orienting" of marking so that the label is readable in the correct sense

Spacing: the distance between adjacent relays depends on use' conditions.
If a relay is used in the "less favorable" conditions that occur with "simultaneously":

- Power supply: the maximum allowed, permanently
- Ambient temperature: the maximum allowed, permanently
- Current on the contacts: the maximum allowed, permanently
- Number of contacts used: 100%
it is strongly recommended to space relay at least 5 mm horizontally and 20 mm vertically, to allow for proper upward heat' dissipation and increase the longevity of the component.

Actually, relays could be used in less severe conditions. In this case, the distance between adjacent relays can be reduced or abolished. A correct interpretation of the use' conditions allows the optimization of the available spaces. Contact AMRA for more information.

To increase relay' longevity, we recommend mounting relays intended for "continuous use" (permanent power supply), alternating them with relays intended for less frequent use.

For a safe use, the retaining clip is recommended.
For use on rolling stock, relays have been tested to EN 61373 standard equipped with retaining clip(s).

Operation

Before use: if relay is not used, for example after long storage periods, contact resistance may increase due to a natural and slight oxidation or polluting deposits.

In order to restore the optimal conductivity and for standard contacts (NOT gold plated) it is recommended to switch several time a load of at least $110 \mathrm{Vdc}-100 \mathrm{~mA}$ or $24 \mathrm{Vdc}-500 \mathrm{~mA}$. The contacts will be "cleaned" thanks to the electric arc generated during the current interruption and the mechanical self-cleaning action.

The common contact rubs against the fixed poles (NO and NC contacts) both when opening and when closing, which ensures a self-cleaning action.
An increase in contacts' resistance, in most cases, does not represent a problem. Many factors contribute to the correct use of contact and consequently to the relay' long-term reliability:

- Load: the current switching generates an electric arc with cleaning effects. For proper electrical cleaning and performance keeping we recommend:
- Standard contacts: Minimum current $=20 \mathrm{~mA}$
o Gold plated contacts: Minimum current $=10 \mathrm{~mA}$
- Operating frequency: relays are components that can operate with a wide range of switching frequency. High frequency operation also allows a continuous cleaning effect by "sliding" (mechanical cleaning). In case of low frequency operation (for example few time a day), we advise:
o Use of contact with currents twice compared to those indicated.
o For currents lower than 10 mA , use gold plated contacts and connect 2 contacts in parallel, in order to reduce the equivalent contact resistance
- Pollution: the presence of pollution can cause impurities on contact surface. Electric charges attract organic molecules and impurities that are deposited on the contact surface. Electrical and mechanical cleaning, respectively, burn and remove such impurities. In pollution presence, the minimum recommended currents must be respected. In extreme cases, provide double the cleaning current.
Condensation is possible inside the relay when energized and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. Plastic materials of relay do not possess hygroscopic properties.

No maintenance is required.
In case of normal relay wear (reaching the end of electrical or mechanical life), the relay cannot be restored and must be replaced.
To check the component, relay removal must be carried out with slight lateral movements. An "up and down" movement can cause terminals damage.

Often the malfunctions are caused by power supply with inverted polarity, by external events or by use with loads exceeding the contact performance.
In case of suspected malfunction, energize relay and observe if mechanical operation of contacts / relay mechanism is performed. Pay attention to the power supply polarity, if relay is equipped with polarized components (example: diode, led).

- In case of expected operation, clean the contacts (see paragraph "OPERATION") and check if the circuit load ranges within the contact performance. If necessary, replace with relays with gold contacts. Note: the electrical continuity of contacts must be checked with adequate current.
- If it does not work, we recommend to use a relay of the same model and configuration.

If an investigation by AMRA is required, pull-out the relay from the socket, don't remove the cap, avoid any other manipulation and contact us. You will be asked for the following data: environmental conditions, power supply, switching frequency, contact load, number of operations performed.

The fault can be described through the "TECHNICAL SUPPORT" section of the website www.amra-chauvin-arnoux.it.
In any case, the relay cannot be repaired by the user.

Storage

Storage conditions must guarantee the environmental conditions (temperature, humidity and pollution) required for the product conservation, in order to avoid deterioration.

The product must be stored in an environment sheltered from atmospheric agents and not polluted, with an ambient temperature between -40 and $+85^{\circ} \mathrm{C}$ with max $75 \% \mathrm{RH}$. Humidity can reach peaks of 95%. In any case, there must be no condensation. Before use, please read carefully "OPERATION" section.
(R)

[^0]: (1) To request the special range, indicate the "ZOx" symbol in the "Keying position" field in the "Ordering scheme" table.

 The special range may be subject to operating specifications different from standard specifications. Please contact us for further information.

[^1]: (1) ENERGY: all applications except for railway.

 RAILWAYS, FIXED EQUIPMENT: application on fixed power systems and electrical railway traction.
 Construction according to RFI (FS Group) specification no. RFI DPRIM STF IFS TE 143 A, if applicable.
 For list of RFI compliant and type-approved products, consult dedicated catalogue "RAILWAY SERIES - RFI APPROVED".
 RAILWAYS, ROLLING STOCK: Application on board rolling stock (rail-tram-trolley vehicles). Electrical specifications according to EN60077.
 Also available is the STATIONS series, with ENEL approved material meeting LV15/LV16 specifications.
 For list of ENEL compliant and type-approved products, consult dedicated catalogue "STATIONS SERIES - LV15-LV16-LV20".
 (2) Other values on request.
 (3) Optional value. The positive mechanical keying is applied according to the manufacturer's model.
 (4) For the standard version with 4 contacts, the field must be left empty.

[^2]: (1) Switching frequency 1,200 operations/hour, cycle 50\%

